US009317542B2

a2z United States Patent (10) Patent No.: US 9,317,542 B2
Agarwal et al. (45) Date of Patent: *Apr. 19, 2016
(54) DECLARATIVE SPECIFICATION OF DATA (52) US.CL
INTEGRATION WORKFLOWS FOR CPC GOG6F 17/30292 (2013.01); GOGF 7/00
EXECUTION ON PARALLEL PROCESSING (2013.01); GOGF 8/314 (2013.01); GOGF 8/456
PLATFORMS (2013.01); GO6F 17/30 (2013.01)
58) Field of Classification S h
(71) Applicant: International Business Machines 8 Nloene oF asstication Seare

Corporation, Armonk, NY (US) See application file for complete search history.

(72) Inventors: Manoj K. Agarwal, Noida (IN); 56 Ref Cited
Himanshu Gupta, New Delhi (IN); (56) ¢lerences Lot
Rajeev Gupta, Noida (IN); Sanjeev K. U.S. PATENT DOCUMENTS
Gupta, Los Altos, CA (US); Mukesh K.
Mohania, Agra (IN), Sriram K. 5,237,691 A * 8/1993 Robinson GO6F 8/30
. 717/107
Padmanabhan, San Jose, CA (US); 5721912 A * 2/1998 Stepezyk ... GOGF 17/30569

Prasan Roy, Karnataka (IN) (Continued)
ontinue

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, FOREIGN PATENT DOCUMENTS

Armonk, NY (US)

Jp 2003330862 A * 11/2003
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Lin et al.,“Data-Intensive Text Processing with MapReduce”, Pre-
. Production Manuscript, 2010, 175 pages.™
This patent is subject to a terminal dis- .
- (Continued)
claimer.
(21) Appl. No.: 13/872,388 Primary Examiner — Alex Gofiman
) Assistant Examiner — Michael Le
(22) Filed: Apr. 29, 2013 (74) Attorney, Agent, or Firm — Cantor Colburn LLP
(65) Prior Publication Data (57) ABSTRACT
US 2013/0254237 Al Sep. 26, 2013 A method for receiving a declarative specification including a

. . plurality of stages. Each stage specifies an atomic operation,
Related U.S. Application Data a data input to the atomic operation, and a data output from the
(63) Continuation of application No. 13/252,465, filed on atomic operation. The data input is characterized by a data

Oct. 4, 2011. type. Links between at least two of the stages are generated to
create a data integration workflow. The data integration work-
(51) Imt.ClL flow is compiled to generate computer code for execution on
GO6F 7/00 (2006.01) aparallel processing platform. The computer code configured
GO6F 17/30 (2006.01) to perform at least one of data preparation and data analysis.
GO6F 9/44 (2006.01)
GO6F 9/45 (2006.01) 5 Claims, 8 Drawing Sheets
{V} MAP (K. to [(K V)]
poTTTTrTETIT eI PARTITION AHD SORT BY K pTTTTTeTT o

__«_»@,7 | REDUCE ON (K., [V1)

US 9,317,542 B2
Page 2

(56)

5,774,661
6,718,368

7,917,463
2004/0044729

2004/0049478
2004/0111479

2005/0027583

2005/0160398
2006/0129440

2008/0086442
2008/0095333
2010/0205075
2010/0241893
2010/0257198
2011/0029377
2011/0029477
2011/0047172
2011/0191693

2011/0202484

References Cited

U.S. PATENT DOCUMENTS

A ®
B1*

B2
Al*

Al*
Al*

Al*

6/1998
4/2004

3/2011
3/2004

3/2004
6/2004

2/2005

7/2005
6/2006

4/2008
4/2008
8/2010
9/2010
10/2010
2/2011
2/2011
2/2011
8/2011

8/2011

Chatterjee GOG6F 9/5038
709/203
Ayyadurai HOAL 12/585
704/1
Dagum et al
Foerg ...ccocvvvvenn. GO06Q 30/06
709/203
Jasperetal.ccoooeen 707/1
Borden G06Q 10/107
709/206
Smit ..o G06Q 40/00
705/35
Bjornson et al. 717/104
Frauenhoffer ... GO6Q 10/06315
705/7.25
Dasdan et al.
Tudor ..o 379/88.17
Zhang
Friedman etal. 714/2
Cohen et al.
Chen et al.
Tengli et al.
Chen et al.
Baggett G06Q 10/107
715/752
ANErousis GO6N 7/005
706/12

2011/0307899 Al* 12/2011 Leecccoovvninnn. GOG6F 9/5027
718/104
2012/0226639 Al* 9/2012 Burdick GOGF 9/4843
706/12
2012/0330958 Al* 12/2012 Xu .ccoovviviiniinnnns GO6F 17/16
707/738

OTHER PUBLICATIONS

Lin, Jimmy, “Exploring Large-Data Issues in the Curriculum: A Case
Study with MapReduce”, Proceedings of the Third Workshop on
Issues in Teaching Computational Linguistics, pp. 54-61.%

A. Pavlo et al.; “A Comparison of Approaches to Large-Scale Analy-
sis”; Jun. 29-Jul. 2, 2009; Providence, Rhode Island; pp. 1-14; ACM
978-1-60558-551—Feb. 9, 2006.

Doug Cutting; “Scalable Computing with Hadoop”; May4, 2006; pp.
1-21—Retrieved on Jul. 28, 2011—http://61.153.44.88/apache/
hadoop/yahoo-sds.pdf.

Cloud Computing: Benefits and Risks of Moving Federal IT into the
Cloud, Testimony of Cita M. Furlani, Director, Information Technol-
ogy Laboratory, National Institute of Standards and Technology,
United States Department of Commerce, United States House of
Representatives Committee on Oversight and Government Reform,
Jul. 1, 2010, 11 pages.

S. Papadimitriou et al.; DISCO: Distributed Co-Clustering With
Map-Reduce—2008—FEighth IEEE International Conference on
Data Mining—pp. 512-521.

The NIST Definition of Cloud Computing (Draft)—Recommenda-
tions of the National Institute of Standards and Technology Peter
Mell and Timothy Grance; pp. 1-7; Jan. 2011.

* cited by examiner

U.S. Patent Apr. 19,2016 Sheet 1 of 8 US 9,317,542 B2

//1 ’
COMPUTER SYSTEM/SERVER 28
12— /
30 MEMORY 34
16 RAM =
STORAGE
SYSTEN
PROCESSING CACHE =~
UNIT 7 40—
32 491
18—
24 29
/ 70
10
DISPLAY INTERFACELS) NETWORK ADAPTER
1/4
EXTERNAL
DEVICES

FIG. 1

US 9,317,542 B2

Sheet 2 of 8

Apr. 19,2016

U.S. Patent

U.S. Patent

Apr. 19,2016

Sheet 3 of 8

SOFTWARE VIRTUAL
MAPPING DATA DATA
66 AND M rereLe /7 CoSROOH 7/ muaiytics R // WNTEGRATION "o
wavication // MBLIFECICLE/ /- EDUCHTION /7 procssive WORKFLOW
WORKLOADS
64 RESOURCE METERING USER SERIICE SLAPLAANING
PROVISIONING // AND PRICING PORTAL /i 7/ cutr Lt
MANAGEMENT
6) 08 29 =] O
VIRTUAL VIRTUAL VIRTUAL VIRTUAL VIRTUAL
SERVERS SHORTAGE NETWORKS ~ APPLICATIONS CLIENTS
VIRTUALIZATION
] T8 = 0 8
% A BE B Gomce wenionine aepUbion DATABSE
MAINFRAMES ARCHITECTURE ySERIES® BLADECENTER® FRme SOFTHARE
SERVERS SYSTEMS ~ SYSTEMS SOFTWARE
HARDWARE AND SOFTWARE

FIG. 3

US 9,317,542 B2

U.S. Patent

ONLINE TRANSACTION | 402
PROGESSING SYSTEM

ClickSteam, CRM
CLAII DATA (TEXT, PICTURE, VIDEQ)
LOCATION TRACKING (GPS)

iPHONE, VEHICLE USE DATA,
$ TRANS TRACKING (ACRDSS
BORDERS & IP PRUVIDERS)

BILLIONS OF MOBILE DEV]CES

FEEDS:

SENSORS DATA

CENSUS-BUREAU DATA,
MARKET DATA, WEATHER DATA,

>, PREDICTIVE ANALYTIGS
|
\
~ R UNSTRUC]'U
@ o] £enRe ,

=

Apr. 19,2016 Sheet 4 of 8

AUTO/CROSS
CORRELATION
3 ANALYTICS,

~ - -

WEB BUZ DATA, SOCIAL
NETWORKING

ABOUT PRODUCTS/COMPANIES
(FOR REPUTATION ANALYSIS)

100°S TBs/
PETABYTES

US 9,317,542 B2

414

| —SEARCH
[

N FINANCIAL —
. PLANNING ___ SCORECARDS
' =

-

DEEP & WIDE ANALYTICS
FINE GRAINED - INDIVIDUAL
PRODUCT AND CUSTOMER AT
ATIME AND PLACE

US 9,317,542 B2

Sheet 5 of 8

Apr. 19,2016

U.S. Patent

=
—
—~&
=
Lo e
=Ec
Ze s
=
=2 =
o~ =T =
=
==
=
a =
==
=
&
1
f
i
i
; E
1
)
t
t
—~
=
=,

BISK

506

504

DISK

508

502

FIG. 5

U.S. Patent Apr. 19,2016 Sheet 6 of 8 US 9,317,542 B2

604 606 606 608
INPUT STAGE LINK STAGE LINK STAGE OUTPUT
DATA 602 {DATR) 602 (DATA) 602 DATA

FIG. 6

US 9,317,542 B2

710

U.S. Patent Apr. 19,2016 Sheet 7 of 8
702 704
; : 708
EMAILS WITH LookUp FOR PHONE)
FIELDS: FROM, NUMBERS USING !
10, MS6 FROM FIELD FILTER EMAILS
CORRESPONDING
@ T0 Vasant kun
IF NOT FOUND, USE ANNOTATION PHONE NUMBERS
TO GET PHONE NUMBERS USING
TEXT ANNOTATION OVER MS6 706

FIG. 7

GET SENTIMENTS
FROM MSG FIELD
AND ADD
SENTIMENT FIELD

AS +ve/-ve

|

FILTER EMAILS

WITH -ve _—
SENTIMENTS 712

DUTPUT 4774

U.S. Patent Apr. 19,2016 Sheet 8 of 8 US 9,317,542 B2

WRITE DECLARATIVE 802
SPECIFICATION AS A SEQUENCE 1
OF STAGES

GENERATE LINKS BETWEEN 804
THE STAGES TO CREATEA DATA 1
INTEGRATION WORK FLOW

COMPILE DATA INTEGRATION 806
WORK FLOW INTO A MAP 7
REDUCE ROUTINE

EXECUTE THE MAP +—808
REDUCE ROUTINE

FIG. 8

US 9,317,542 B2

1
DECLARATIVE SPECIFICATION OF DATA
INTEGRATION WORKFLOWS FOR
EXECUTION ON PARALLEL PROCESSING
PLATFORMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/252,465, filed Oct. 4, 2011, the disclosure of
which is incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to computer systems, and
more specifically to declarative specification of data integra-
tion workflows for execution on parallel processing plat-
forms.

MapReduce is an example of a software framework that is
utilized to define and execute data integration workflows on
parallel processing platforms. MapReduce is utilized for pro-
cessing large datasets to solve certain kinds of distributable
problems using a large number of computers, collectively
referred to as a cluster if all nodes use the same hardware or as
a grid if the nodes use different hardware. Computational
processing occurs on data stored either in a filesystem (un-
structured) or within a database (structured). A map step ina
MapReduce framework includes a master node receiving
input, partitioning the input up into smaller sub-problems,
and distributing the smaller sub-problems to slave nodes. A
reduce step in a MapReduce framework occurs when the
answers of a group of sub-problems are combined in some
way to get the output (i.e., the answer to the problem that it
was originally trying to solve).

An example of a MapReduce framework is Hadoop, which
includes a programming model and an associated implemen-
tation for processing large data sets. Users specify a map
function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that
merges the set of intermediate values associated with the
same intermediate key. An advantage of using a MapReduce
framework is that it allows for distributed processing of the
map and reduce operations. Mapping operations are indepen-
dent of each other, and thus, at times all of the map functions
are performed in parallel, although in practice this is often
limited by the data source and/or the number of central pro-
cessing units (CPUs). MapReduce is used by very large server
farms to sort through petabytes of data in a relatively short
period of time. The parallelism supported by MapReduce also
allows for recovering from the partial failure of servers or
storage during the operation. For example, if one mapper or
reducer fails, the work is rescheduled (assuming that the input
data is still available).

SUMMARY

According to exemplary embodiments a method for receiv-
ing a declarative specification that includes a plurality of
stages. Each stage specifies an atomic operation, a data input
to the atomic operation, and a data output from the atomic
operation. The data inputs are characterized by a data type.
Links between at least two of the stages are generated to
create a data integration workflow. The data integration work-
flow is compiled to generate computer code for execution on
a parallel processing platform. The computer code is config-
ured to perform at least one of data preparation and data
analysis.

20

25

30

35

40

45

55

2

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates a cloud computing node according to an
embodiment of the present invention;

FIG. 2 illustrates a cloud computing environment accord-
ing to an embodiment of the present invention;

FIG. 3 illustrates abstraction model layers according to an
embodiment of the present invention;

FIG. 4 illustrates different types of data sources and types
of data that may be integrated in accordance with an embodi-
ment of the present invention;

FIG. 5 illustrates a flow diagram of a process performed by
a MapReduce framework in accordance with an embodiment
of the present invention;

FIG. 6 illustrates a data integration workflow having a
plurality of stages and links in accordance with an embodi-
ment of the present invention;

FIG. 7 illustrates an example data integration workflow for
implementing a filter process in accordance with an embodi-
ment of the present invention; and

FIG. 8 illustrates a flow diagram of a process for creating
and executing a data integration workflow in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

An embodiment is a simplified and easy to use method of
building data integration workflows for use in performing
data analytics on large volumes of data. A data integration
workflow, which is compiled and executed on a parallel pro-
cessing platform, is built using atomic stages and links
between the atomic stages. The data integration workflow as
described herein is defined by a user in a visual declarative
manner via a graphical user interface screen. The resulting
data integration workflow is automatically compiled into
computer code for execution on a parallel processing plat-
form to prepare the data for analysis and/or to perform data
analysis. As used herein, the term “parallel processing plat-
form” refers to a processor(s) where a plurality of calculations
are carried out simultaneously.

MapReduce is used herein as an example of a software
framework that may is used to define and execute data inte-
gration workflows on a parallel processing platform. It should
be understood that embodiments are not limited to the
MapReduce framework and that any software framework that
provides data integration workflows for execution on parallel
processing platforms may be utilized.

Contemporary map and reduce programs in a MapReduce
framework are written in programming languages such as, but
not limited to Java and Python, or in scripting languages such
as, but not limited to Pig, Hive and Jaql. Thus, computer
programming skill is required to write contemporary map and
reduce programs for execution on a MapReduce platform. In

US 9,317,542 B2

3

contrast, exemplary embodiments described herein, provide
map and reduce programs for execution on a MapReduce
platform that are written as declarative specifications (e.g.,
using a graphical user interface) that allow a user without
computer programming skills to generate MapReduce appli-
cations that comply with the MapReduce framework.

Data analytics for extracting business insights, by integrat-
ing different kinds of massive amounts of data, is becoming
widespread, however building analytics applications is noto-
riously difficult due to required expertise in statistics,
machine learning, data management, graph theory, algo-
rithms, systems and parallel processing. Typical business
analysts and system analysts do not have these skills and this
gap often results in inconsistencies in the analysis and imple-
mentation, induces delays, and sometimes even results in
important business insights being missed. These skill gap
issues are minimized by providing a tool for building data
integration workflows that allows for ease of analytics extrac-
tion so that typical business users can represent the required
operations in a simple, easy to use, visual manner.

As the complexity of the data integration workflows
increases, the development, debugging, and maintenance of
data integration workflows becomes a bigger challenge. The
ability to write data integration workflows as a sequence of
atomic stages, as provided by embodiments described herein,
reduces the complexity of the development, debugging, and
maintenance of data integration workflows.

A data integration workflow process may be performed in
a cloud computing environment. It is understood in advance
that although this disclosure includes a detailed description
on cloud computing, implementation of the teachings recited
herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of
being implemented in conjunction with any other type of
computing environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

10

15

20

25

30

35

40

45

50

55

60

65

4

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-
ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited user-specific application configuration set-
tings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application hosting environment configu-
rations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or oft-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope ofuse or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

US 9,317,542 B2

5

In cloud computing node 10 there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

25

30

35

40

45

6

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
Input/Output (I/O) interfaces 22. Still yet, computer system/
server 12 can communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54 A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or
Hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in F1G. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architecture
based servers, in one example IBM pSeries® systems; IBM
xSeries® systems; IBM BladeCenter® systems; storage
devices; networks and networking components. Examples of
software components include network application server
software, in one example IBM WebSphere® application
server software; and database software, in one example IBM

US 9,317,542 B2

7

DB2® database software. (IBM, zSeries, pSeries, xSeries,
BladeCenter, WebSphere, and DB2 are trademarks of Inter-
national Business Machines Corporation registered in many
jurisdictions worldwide).

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. User portal provides access
to the cloud computing environment for consumers and sys-
tem administrators. Service level management provides
cloud computing resource allocation and management such
that required service levels are met. Service Level Agreement
(SLA) planning and fulfillment provide pre-arrangement for,
and procurement of, cloud computing resources for which a
future requirement is anticipated in accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and data integration workflow processing.

In one exemplary embodiment, a data integration workflow
application 70 in the workloads layer 66 implements the
column based data integration workflow processes described
herein; however, it will be understood that the data integration
workflow application 70 may be implemented in any layer.

The data integration workflow application 70 includes a
user interface that enables a user or authorized individual to
create data integration workflows, compile the data integra-
tion workflows into MapReduce routines, to select sources of
data to be utilized when the data integration workflows are
executed, and to initiate execution of the MapReduce rou-
tines.

Referring to FIG. 4, an illustration of different data sources
and different types of data that may be integrated using a
MapReduce framework is generally shown. Structured data
402, semi-structured data 404 and unstructured data 406 are
extracted from a variety of sources and a variety of locations,
and then merged together using analytics such as auto/cross
correlation analytics and predictive analytics. One option for
performing the data collection is to use an extract, transform
and load (ETL) tool located, for example, in cloud computing
environment 410. The merged data is stored in a storage
device 412 in a format that is easily accessible by end users,
such as business analysts, via a user device 414. Feedback/
action 408 is then initiated based on the results of the analysis.
As shown in FIG. 4, the structured data 402 is characterized
by data values being located in set locations and includes data
from any online transaction processing system that is format-
ted for example, as relational data. The semi-structured data
404 has a somewhat predictable pattern and includes data
such as click stream data, location tracking data, vehicle use
data, census bureau data, etc. The unstructured data 406 does

10

25

35

40

45

55

8

not have particular types of data in any set locations or pat-
terns and includes data such as text data from social network-
ing websites.

One example of massive scale data analytics that uses
structured data as input is fraud detection analysis. In fraud
detection analysis the number of times that a credit card is
used at two specified types of stores is counted, and a range of
amounts at each store within a certain time interval are output.
Another example of massive scale data analytics is when
semi-structured data is input to web analytics. An example of
web analytics is the extracting of performance indicators,
such as the percentage of customers shopping in an on-line
store that selected items for their shopping cart and then left
the on-line store without purchasing the items in their shop-
ping cart (i.e., they left the on-line store without checking out
while the shopping cart was non-empty). Other examples of
massive scale data analytics include system log mining to
integrate logs of different types (e.g., WebSphere, DB2, etc.)
into a common framework in order to answer queries on the
logs. An example query is “what happened to WebSphere
after DB2 got started?”. In addition, text flows may be devel-
oped using atomic operations that involve various informa-
tion extracting techniques such as entity identification, rela-
tionship extraction, classification, sentiment analysis, etc. As
used herein, the term ‘atomic operation” refers to an opera-
tion that includes a single operation or several sub-operations
that must be performed as a unit.

Referring to FIG. 5, a flow diagram of a process performed
by a MapReduce framework is generally shown. The MapRe-
duce framework provides a simple model to write distributed
programs to be executed over a large number of processors.
These distributed programs are referred to herein as MapRe-
duce applications. The processing shown in FIG. 5 is imple-
mented, for example, by the data integration workflow appli-
cation 70. As shown in FIG. 5, the data to be analyzed is
spread over several disks in a first data domain 502.

The map and reduce functions of MapReduce are both
defined with respect to data structured in the form of (key,
value) pairs. The map function takes one pair of data with a
type in the first data domain 502 and returns an array of (key,
value) pairs in a second data domain 504. This is shown in
FIG. 5 as Map (K, V) to [(K',V")]. The map function is applied
in parallel to every item in the input dataset. This produces a
list of (K', V') pairs for each call. Next, the MapReduce
framework collects all pairs with the same key from all lists
and groups them together, thus creating one group for each
one of the different generated keys.

As shown in FIG. 5, the reduce function is then applied in
parallel to each group in the second data domain 504, which
in turn produces a third data domain 506. Contents of the third
data domain 506 are shown in FIG. 5 as Reduce on (K',[V']).
The returned results of all reduce instances are collected as
the desired result and stored as a fourth data domain 508.
Thus, the MapReduce framework as shown in FIG. 5 trans-
forms a list of (key, value) pairs into a list of values. The
MapReduce framework is different than a typical functional
programming map and reduce combination that accepts a list
of arbitrary values and returns one single value that combines
all of the values returned by map.

Referring to FIG. 6, a data integration workflow having a
plurality of stages 602 and links 606 in accordance with an
embodiment of the present invention is generally shown. A
user interface screen, such as display 24, displays a sequence
of'stages 602 and links 606 as shown in FIG. 6 and allows the
user to edit the data integration workflow (e.g., delete, insert,
copy stages 602 and links 606, edit content of stages 602 and
links 606) via a graphical user interface. The user interface

US 9,317,542 B2

9

screenis a touch screen or alternatively, user selection is made
using a selection device such as a mouse.

Input data is received into a first sequential stage 602 and
output data 608 is output from the last stage 602 in the
sequence. In addition, the data output of a stage 602 becomes
the data input of the next stage 602 in the sequence. The data
integration workflow shown in FIG. 6 is visually designed
using atomic stages 602 and links 606. Each stage 602 per-
forms an atomic operation on input data to produce output
data. In most cases, the data input to each stage 602 is of a
particular type (structured, semi-structured, or unstructured),
however embodiments described herein support inputs of
multiple types into a stage 602. In addition, different stages
602 are capable of processing different types of data in the
data integration workflow. The stages 602 are attached
together using links 606. Each link 606 has a schema defini-
tion flowing through it. The schema definition is character-
ized as either strict (for structured data) or loose (e.g., only
specifies a data type such as “string” for unstructured text).
The output schema of a stage 602 is an input schema for the
next stage 602. In an embodiment, when the schema is a loose
schema, only the properties or part of schema that are
required at the output are defined and the other properties are
hidden.

Stages 602 that receive structured data as input perform
operations such as, but not limited to: select, join, and aggre-
gate, Stages 602 that receive semi-structured hierarchical
data as input perform operations such as, but not limited to:
restructuring (promoting child as sibling, demoting sibling as
child), expanding (creating an array of values of a particular
attribute and putting it as child in the tree), as well as the
operations performed when the input data is structured.
Stages 602 that receive unstructured text data as input per-
form operations such as, but not limited to: classifying text
(output schema may have the input text along with its class),
extracting particular kinds of entities from text (output
schema may have an array of person names and phone num-
bers), and sentiment detection (image categorization, video
filtering, etc.).

An example data integration workflow for implementing a
filter process in accordance with an embodiment of the
present invention is generally shown in FIG. 7. The input to
the first stage 704 is structured data that includes the “from”,
“to”, and “message” fields from emails. A phone number
corresponding to a name in the “from” field is looked up in a
look-up table at stage 704. If the phone number is not found in
the look-up table, stage 706 is performed to attempt to retrieve
the phone number in another way using unstructured data. A
rule based annotator may be used to extract the phone num-
bers from natural language data. An example of a rule used by
the rule based annotator is: three digits followed by a dash that
is followed by seven digits indicates a phone number. The
output from stages 704 and 706 are a sequence/array of phone
numbers. These phone numbers are input to stage 708, where
phone numbers of customers from a particular area (say,
“Vasant kunj”), are filtered. The emails corresponding to
“Vasant kunj” phone numbers are sent to stage 710 where
sentiments are extracted from the message field (unstructured
data) and a sentiment field is updated with a positive or a
negative. Emails with a sentiment field containing a negative
are filtered at stage 712 and then output 714. This example is
intended to show one example of a data integration workflow
that may be generated by an exemplary embodiment, and as
such it is not intended to be limiting.

A data integration workflow, such as the one shown in FIG.
7, is built using a series of operators connected using input-
output (1/0) relationships. The workflow may be built visu-

10

15

20

25

30

35

40

45

50

55

60

65

10

ally (e.g., by a user at a user input screen) using stages,
representing operators, and links to represent the I/O relation-
ships. For building the workflow visually, a tool is used to
provide a pallet of stages and links. A user selects stages from
the pallet and puts them into a canvass (e.g., an input screen
such as display 24 that displays where a user can pick and
drop and draw). These stages are then joined using links from
the pallet, and properties of the stages and links are specified
by the user.

Turning now to FIG. 8, a flow diagram of a process for
creating and executing a data integration workflow in accor-
dance with an embodiment of the present invention is gener-
ally shown. A declarative specification that includes a
sequence of stages is written by a user (e.g., a business ana-
lyst) at block 802. Each stage specifies an atomic operation, a
data input, and a data output. Links are added between the
stages to create a data integration workflow at block 804.
Processing continues at block 806 where the data integration
workflow (including the links and the stages) is compiled into
a MapReduce routine. Compilation involves converting a
visual job over mixed data into one or more MapReduce
programs. The compilation is performed by converting each
stage into a corresponding MapReduce application and using
the links to define the I/O relationships between the stages.
Alternatively, compilation is performed by converting the
visual flow into a script in a scripting language (e.g., Jaql),
which in turn is compiled into one or more MapReduce pro-
grams. Processing completes at block 808 when the MapRe-
duce routine is executed.

A declarative specification of a data processing job on a
parallel processing platform is used to generate the data inte-
gration workflows. As used herein, the term “declarative
specification” refers to the user specifying (declaring) the
operations that need to be performed by the MapReduce
programs rather than describing how the operations need to
be performed using the MapReduce programs. The declara-
tive specification may use operators in a visual manner. In
addition, the job supports processing being performed on
multiple types of data (mixed data processing), including, but
not limited to: structured, semi-structured, and unstructured
data. Further, the job may be specified as a cascade of atomic
operators, including, text processing operators. The atomic
operator also optionally includes machine learning operators.
In an embodiment, the parallel processing platform is
Hadoop.

The translating of the declarative specification into a lower
level language includes executing operators as lower level
language primitives and library functions. Examples of a
lower level language include JAQL query language and Java
MapReduce programs. The translation of declarative also
includes compilation of the job. The compilation may be
performed by traversing the job, where the job is made up of
nodes (or stages) and edges. Stages are defined such that each
stage results in one atomic operation. Atomicity of the opera-
tion depends on the specificity of the types of jobs being
designed.

Data integration involving different types of data in a single
workflow includes writing a data integration workflow (also
referred to herein as a “job”) as a sequence of stages each
representing atomic operation on one or more types of data. In
addition, loose hierarchical schemas are written for various
stages of the data integration workflow. The job is compiled
into a MapReduce routine either directly or indirectly through
some other language/data model. The generated MapReduce
routines are then executed over Hadoop or any other distrib-
uted processing system.

US 9,317,542 B2

11

Methods for representing unstructured text processing as a
series of atomic operations include writing an unstructured
data integration workflow as a series of atomic operations
such as entity identification, classification, sentiment detec-
tion, etc. Each atomic operation is represented as a stage and
stages are connected using links based on their input-output
relationships. The data integration workflow is configured
into a MapReduce routine either directly or indirectly through
some other language/data model. The generated MapReduce
routines are then executed over Hadoop or any other distrib-
uted processing system.

The map reduce routines are optimized to generate map
reduce routines with an optimum number of mappers and
reducers. Any MapReduce program can be run as a number of
map and reduce instances based on, for example, the data size
and the computing capabilities. By optimally setting the num-
ber of map and reduce instances the resource consumption
and time taken to execute a job is reduced.

Technical effects and benefits include the ability to write
data integration workflows as a sequence of atomic stages,
which leads to a reduction in the complexity of data integra-
tion workflows.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including

10

15

20

25

30

35

40

45

50

55

60

65

12

but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams

US 9,317,542 B2

13

and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele-
ment components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A method comprising:

receiving a declarative specification that includes a plural-

ity of stages, each stage specifying an atomic operation,
a data input to the atomic operation, and a data output
from the atomic operation, the data input characterized
by a data type, the data type being at least one of struc-
tured data, semi-structured data, and unstructured data;
reducing a complexity of the declarative specification by
generating links between at least two of the plurality of
stages to create a data integration workflow, the at least

10

15

20

25

30

35

40

45

50

14

two of the plurality of stages in the data integration
workflow having data inputs characterized by difterent
data types;

compiling, on a computer, the data integration worktlow to

generate computer code for execution on a parallel pro-

cessing platform, the computer code including instruc-

tions configured for:

accessing subsets of interrelated data corresponding to
the data inputs,

applying a mapping operation in parallel to the subsets
of the interrelated data to generate a plurality of out-
put groups, and

merging the output groups according to the data integra-
tion workflow to generate at least one output of the
data outputs, the at least one output being character-
ized by a singular data type;

optimize with an optimum number of mappers and reduc-

ers the computer code for execution on the parallel pro-
cessing platform;

performing a filter operation via the computer code to

retrieve a phone number, the filter operation including:

accessing structured data subset corresponding to a first
data input, the structured data subset including a
name,

retrieving the phone number from a look-up table with
respect to the name,

retrieving the phone number from unstructured data sub-
set corresponding the first data input by utilizing a
rule based annotator to extract numbers from natural
language of the unstructured data subset when the
phone number is not initially retrieved from the look-
up table,

extracting positive or negative sentiments from unstruc-
tured data of a message field of the at least one email
corresponding to the phone number, and

outputting the at least one email as the at least one output
when a negative sentiment is extracted from the
unstructured data of the message field; and

update a sentiment field in accordance with the positive or

negative sentiments extracted from the unstructured data
of the message field,

wherein the computer code is a MapReduce application.

2. The method of claim 1, further comprising executing the
computer code on the parallel processing platform.

3. The method of claim 1, wherein the declarative specifi-
cation is received from a user via a user interface screen.

4. The method of claim 1, wherein each of the subsets of
interrelated data is stored across a plurality of physical stor-
age locations, each physical storage location including a sub-
set of the interrelated data.

5. The method of claim 1, wherein the at least one output of
the data outputs is a merger of the data inputs characterized by
different data types of either of the at least two of the plurality
of stages.

